上世纪50年代,随着材料科技的爆发性发展,有机高分子材料开始广泛的应用于生产和生活的各个领域。今天,高分子材料作为主要成分的塑料、橡胶、纺织品、涂料成为我们必不可少的生产元素,应用高分子材料制作的电器、餐具、交通工具等物品为我们的生活带来极大便利的同时也带来了不少的安全隐患。
由于高分子材料的氧指数较低,含氧量达21%的空气就足以满足多数高分子材料燃烧条件。此外,高分子材料燃烧时释放烟尘和有毒气体,不仅危害人体健康,而且会造成环境的污染。为了降低高分子材料的可燃性,防止火灾发生,阻燃剂应运而生。阻燃剂,顾名思义,就是可以用以阻止材料可燃性,即阻止材料被引燃且抑制火焰传播的助剂。
阻燃剂的成分构成及阻燃机理
阻燃剂的种类有很多,按成分大体可以分成有机阻燃剂和无机阻燃剂两类。其中有机阻燃剂包括卤系阻燃剂、磷-氮型阻燃剂、有机磷系阻燃剂、有机硅系阻燃剂等。我们就阻燃剂的阻燃机理选取几类进行介绍。
卤系阻燃剂是有机阻燃剂中一个重要成员,它的主要成分是卤素有机物。在高温条件下高分子降解产生的自由基是维持有机物燃烧的因素,而卤系阻燃剂在受热分解时产生的卤化氢(HX)气体可以捕捉自由基,从而达到阻止火焰扩散的目的。此外,卤化氢本身不能燃烧而且密度比空气大,在高分子材料表面形成一层气体屏障,阻隔高分子材料与氧气的接触。
磷-氮型阻燃剂以磷、氮为主要元素。这类阻燃剂又称为膨胀型阻燃剂,原因是这类阻燃剂在受热时,表面能够生产一层均匀的碳质泡沫层,起到隔离热、氧的作用。膨胀型阻燃体系一般由酸源(脱水剂),碳源(成炭剂)和气源(氮源、发泡源)三个部分组成。受热后,由酸源放出能酯化多元醇和可作为脱水剂的无机酸; 温度进一步升高,无机酸与多元醇(碳源)发生反应生成酯类,并且处于粘稠的熔融状态。反应过程中产生的水蒸气和由气源产生的不燃性气体使已处于熔融状态的体系膨胀发泡,与此同时,多元醇和酯脱水炭化,形成无机物及炭残留物,随着温度升高和反应的进行,体系胶化和固化,最后形成多孔的碳质泡沫层。
无机阻燃剂主要有可膨胀石墨、氢氧化物、红磷或聚磷酸盐等,一般情况下是几种不同无机物混合使用。在高温下,膨胀石墨迅速膨胀,该高聚物表面形成坚韧的碳层,可以将可燃物与热源隔开;氢氧化物受热吸收大量热量而放出水蒸气,稀释可燃气体,同时生成耐火金属氧化物;红磷或聚磷酸盐燃烧生成聚偏磷酸玻璃体,可以覆盖在燃烧体表面形成保护膜,同时形成的磷酸有很强的脱水性,可以将聚合物碳化形成碳隔离层。
综上可以发现,阻燃剂的作用可以归纳为(1)吸收燃烧所放出的热量,(2)释放不能燃烧气体,稀释、隔离可燃和助燃气体,(3)生产与有机物自由基其反应的成分,(4)形成固体隔离层。
当前,阻燃剂主要应用于四个领域:交通运输、电子与电气设备、家具以及建筑物和建筑材料。阻燃剂家族有200多种产品,按元素不同可分为溴系、磷系、氮系、硅系以及无机阻燃剂。这种多样性也有其必然性,因为要拥有防火性能的材料和产品在特性、组成甚至应用上都存在很大区别。某些阻燃剂可能非常适合某些特定用途,但在其他领域则不起作用。也就是说,没有一种阻燃剂是万能的,必须按照不同应用选择不同方案。材料工程师会根据材料的结构和性能选择合适的阻燃剂,如80%~90%的印制电路板都采用溴系阻燃剂。
资讯来源于 阻燃剂供应商 扬州晨化新材料股份有限公司